metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{ μ_2 -2-[(2-hydroxyethyl)(methyl)amino]ethanolato}bis(μ_3 -N-methyl-2,2'azanediyldiethanolato)tetrakis-(thiocyanatato- κN)dichromium(III)dimanganese(II) dimethylformamide tetrasolvate

Valentyna V. Semenaka,^a* Oksana V. Nesterova,^a Volodymyr N. Kokozay,^a Roman I. Zubatyuk^b and Oleg V. Shishkin^b

^aDepartment of Inorganic Chemistry,Taras Shevchenko National University of Kyiv, Volodymyrs'ka St. 64, Kyiv 01601, Ukraine, and ^bSTC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60, Lenina Avenue, Kharkiv 61001, Ukraine

Correspondence e-mail: valya.semenaka@gmail.com

Received 10 October 2011; accepted 18 November 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.048; data-to-parameter ratio = 25.8.

The heterometallic title complex, $[Cr_2Mn_2(C_5H_{11}NO_2)_2(C_5H_{12}NO_2)_2(NCS)_4]\cdot4C_3H_7NO$, was prepared using manganese powder, Reineckes salt, ammonium thiocyanate and a non-aqueous solution of *N*-methyldiethanolamine in air. The centrosymmetric molecular structure of the complex is based on a tetranuclear $\{Mn_2Cr_2(\mu-O)_6\}$ core. The tetranuclear complex molecule and the two uncoordinated dimethyl-formamide molecules are linked by $O-H\cdots O$ hydrogen bonds, while the two other molecules of dimethylformamide do not participate in hydrogen bonding.

Related literature

For background to polynuclear chromium-containing complexes, see: McInnes *et al.* (2005); Affronte *et al.* (2005). For the use of amino alcohols with versatile bridging modes in generating such metal clusters, see: Langley *et al.* (2009); Ferguson *et al.* (2008); Saalfrank *et al.* (2001). For background to direct synthesis, see: Kokozay & Shevchenko (2005).

Experimental

Crystal data

 $\begin{array}{ll} [\mathrm{Cr}_{2}\mathrm{Mn}_{2}(\mathrm{C}_{5}\mathrm{H}_{11}\mathrm{NO}_{2})_{2}(\mathrm{C}_{5}\mathrm{H}_{12}\mathrm{NO}_{2})_{2}^{-} & \beta = 106.123 \ (2)^{\circ} \\ (\mathrm{NCS})_{4}]\cdot 4\mathrm{C}_{3}\mathrm{H}_{7}\mathrm{NO} & V = 2781.81 \ (9) \ \text{\AA}^{3} \\ M_{r} = 1208.64 & Z = 2 \\ \mathrm{Monoclinic}, P_{2}_{1}/n & \mathrm{Mo} \ \kappa\alpha \ \mathrm{radiation} \\ a = 11.5207 \ (2) \ \text{\AA} & \mu = 1.04 \ \mathrm{mm}^{-1} \\ b = 13.5261 \ (2) \ \text{\AA} & T = 100 \ \mathrm{K} \\ c = 18.5825 \ (4) \ \text{\AA} & 0.3 \times 0.2 \times 0.1 \ \mathrm{mm} \end{array}$

Data collection

Oxford Diffraction Xcalibur	14864 measured reflections
Sapphire3 diffractometer	8065 independent reflections
Absorption correction: multi-scan	5070 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.025$
Diffraction, 2008)	
$T_{min} = 0.6$ $T_{max} = 0.8$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	313 parameters
$wR(F^2) = 0.048$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$
8065 reflections	$\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1		-	
Hydrogen-bond	geometry	(Å,	°).

<i>D</i> -H··· <i>A</i>	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
O3−H3···O5	0.82	1.78	2.5985 (18)	176

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZK2033).

References

- Affronte, M., Casson, I., Evangelisti, M., Candini, A., Carretta, S., Muryn, C. A., Teat, S. J., Timco, G. A., Wernsdorfer, W. & Winpenny, R. E. P. (2005). *Angew. Chem. Int. Ed.* 44, 6496–6500.
- Ferguson, A., Lawrence, J., Parkin, A., Sanchez-Benitez, J., Kamenev, K. V., Brechin, E. K., Wernsdorfer, W., Hill, S. & Murrie, M. (2008). *Dalton Trans.* pp. 6409–6414.

Kokozay, V. N. & Shevchenko, D. V. (2005). Mater. Sci. Poland, 23, 287-312.

- Langley, S. K., Berry, K.J., Moubaraki, B. & Murray, K. S. (2009). *Dalton Trans.* pp. 973–982.
- McInnes, E. J. L., Piligkos, S., Timco, G. A. & Winpenny, R. E. P. (2005). Coord. Chem. Rev. 249, 2577–2590.
- Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2769.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m1864-m1865 [doi:10.1107/S1600536811049336]

$Bis\{\mu_2-2-[(2-hydroxyethyl)(methyl)amino]ethanolato\}bis(\mu_3-N-methyl-2,2'-azanediyldiethanolato)tetrakis(thiocyanatato-\kappa N)dichromium(III)dimanganese(II) dimethylform-amide tetrasolvate$

V. V. Semenaka, O. V. Nesterova, V. N. Kokozay, R. I. Zubatyuk and O. V. Shishkin

Comment

Great interest in the synthesis and investigation of polynuclear chromium- and manganese-containing compounds dates from the late 90 s mostly due to the works R.E.P. Winpenny and coworkers devoted to magnetic studies of high-nuclear cages and wheels (McInnes et al., 2005; Affronte et al., 2005). At the same time, the potential of alcohols and amino alcohols in generating such metal clusters was widely explored (Saalfrank et al., 2001; Langley et al., 2009; Ferguson et al., 2008). The polydentate alkoxo ligands possessing versatile bridging modes were recognized as promising reagents for synthesis of new heterometallic complexes. Previously we have demonstrated that amino alcohols represent a powerful tool for assembling polynuclear metal complexes in conditions of the synthetic approach named "direct synthesis of coordination compounds". This strategy employs metal powders or metal oxides as starting materials and eliminates the separate step of building block construction, proving to be an efficient route to obtain new heterometallic complexes (Kokozay & Shevchenko, 2005). Novel heterometallic compound [Mn₂Cr₂(NCS)₄(HMeDea)₂(MeDea)₂]²4dmf have been prepared in one-step self-assembly reaction of zerovalent manganese, Reineckes salt, ammonium thiocyanate and dymethylformamide (dmf) solution of *N*-methyldiethanolamine (H₂MeDea) in air using molar ratio $Mn^0:NH_4[Cr(NCS)_4(NH_3)_2]:H_2O = 4:1$. X-ray diffraction studies reveal that the centrosymmetric molecular structure of the complex is based on a tetranuclear $\{Mn_2Cr_2(\mu-O)_6\}\$ core with the metal atoms arranged in a planar rhombic array. In the present complex MeDea and HMeDea ligands adopt a chelating-bridging mode forming five-membered rings. Both manganese(II) ions are five coordinated and have N₂O₃ donor sets (Fig. 1) formed by three oxygen and one nitrogen atom of N-methyldiethanolamine ligands and one nitrogen atom of terminal thiocyanate group. The Mn–O(N) bond lengths vary in the range 2.0651 (10)–2.3004 (13) Å, while cis and trans O(N)-Mn-O(N) bond angles range from 65.28 (6)° to 124.35 (14)° and from 140.06 (9)° to 173.0 (3)°, respectively. Each chromium(III) atom has distorted octahedral environment comprised by four oxygen and one nitrogen atoms from N-methyldiethanolamine ligands and one nitrogen atom from terminal thiocyanate group. The Cr-O(N) distances are in the range of 1.9391 (10)-2.0974 (14) Å. The cis and trans O(N)-Cr-O(N) bond angles vary from 80.70 (5)° to 101.65 (5)° and from 158.59 (5)° to 177.32 (5)°, respectively. Tetranuclear molecule of the complex and two dmf molecules are linked together by O–H···O hydrogen bonds $[O(3)-H(3)-O(5): D-A = 2.598 \text{ Å}, D-H···A = 175.99^{\circ}]$, two other uncoordinated molecules of dmf are not involved in hydrogen bonding.

Experimental

Manganese powder (0.137 g, 2.5 mmol), NH₄[Cr(NCS)₄(NH₃)₂]·H₂O (0.221 g, 0.625 mmol), NH₄NCS (0.333 g, 4.375 mmol), dmf (20 mL) and *N*-methyldiethanolamine (0.80 cm³) were heated to 50–60° and stirred magnetically during 2 h. Dark blue crystals suitable for the X-ray crystallographic study were deposited after several months after addition of diethyl ether and Pr^iOH into the resulting blue solution. The crystals were filtered off, washed with dry Pr^iOH , and finally

dried at room temperature. Yield: 0.09 g, 24% (per chromium). Anal. Calc. for $C_{36}H_{74}Mn_2Cr_2N_{12}O_{12}S_4$ (*M* = 1208.64): Mn, 9.09; Cr, 8.60; C, 35.78; H, 6.12; N, 13.91; S, 10.61. Found: Mn, 9.1; Cr, 8.8; C, 35.8; H, 6.2; N, 13.8; S, 10.7. IR: 2889(*m*), 2867(sh), 2818(sh), 2080(*vs*), 1660(*s*), 1458(w), 1449(sh), 1410(sh), 1383(*m*), 1355(w), 1308(w), 1260(sh), 1253(w), 1207(sh), 1171(sh), 1143(sh), 1075(*s*), 1032(sh), 1002(sh), 980(sh), 913(*m*), 764(sh), 744(*m*), 676(*m*), 643(sh), 545(*m*), 517(*m*), 474(w), 419(sh), 412(w). The compound is sparingly soluble in dmso and dmf, insoluble in water and it is indefinitely stable in air.

Refinement

All non-hydrogen atoms were located from the initial solution and refined with anisotropic thermal parameters. The hydrogen atoms were positioned geometrically and included into refinement using riding model approximation with U_{iso} =nUeq of non-hydrogen carrier atom (n = 1.5 for CH₃ and OH groups and n = 1.2 for remaining H-atoms)

Figures

Fig. 1. Molecular structure of the complex, showing the atom numbering, with 50% probability displacement ellipsoids

$Bis\{\mu_2-2-[(2-hydroxyethyl)(methyl)amino]ethanolato\}bis(\mu_3-N-methyl-2,2^{1}-azanediyldiethanolato)tetrakis(thiocyanatato- \kappa N)dichromium(III)dimanganese(II) dimethylformamide tetrasolvate$

Crystal data

$[Cr_2Mn_2(C_5H_{11}NO_2)_2(C_5H_{12}NO_2)_2(NCS)_4] \cdot 4C_3H_7NOZ = 2$					
$M_r = 1208.64$	F(000) = 1264				
Monoclinic, $P2_1/n$	$D_{\rm x} = 1.443 \ {\rm Mg \ m}^{-3}$				
a = 11.5207 (2) Å	Mo K α radiation, $\lambda = 0.71073$ Å				
b = 13.5261 (2) Å	$\mu = 1.04 \text{ mm}^{-1}$				
c = 18.5825 (4) Å	T = 100 K				
$\beta = 106.123 \ (2)^{\circ}$	Block, dark blue				
$V = 2781.81 (9) \text{ Å}^3$	$0.3\times0.2\times0.1~mm$				
Data collection					

Oxford Diffraction Xcalibur Sapphire3 diffractometer	5070 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$

ω scans	$\theta_{\text{max}} = 30^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2008)	$h = -12 \rightarrow 16$
$T_{\min} = 0.6, \ T_{\max} = 0.8$	$k = -16 \rightarrow 19$
14864 measured reflections	$l = -26 \rightarrow 12$
8065 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.048$	H-atom parameters constrained
<i>S</i> = 0.98	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.010P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
8065 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
313 parameters	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.24 (release 21-04-2008 CrysAlis171 .NET) (compiled Apr 21 2008,18:23:10) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and isot	ronic or	eauivalen	t isotronic	disn	lacomont	narameters	$(\AA^2$)
raciionai	uiomic	coorainales	unu ison	opic or	equivalent	isoiropic	uisp	nucemeni	purumeters	(A	1

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.50236 (2)	0.224755 (17)	0.513287 (14)	0.01778 (6)
Cr1	0.38351 (2)	-0.005009 (19)	0.523254 (14)	0.01505 (6)
S1	0.16877 (4)	-0.10240 (4)	0.69652 (3)	0.04214 (14)
S2	0.25156 (4)	0.38492 (3)	0.28877 (2)	0.02974 (11)
O1	0.44591 (9)	0.05372 (7)	0.44303 (6)	0.0156 (2)
O2	0.41428 (9)	0.12490 (7)	0.56870 (6)	0.0181 (2)
O3	0.62650 (11)	0.35388 (8)	0.52249 (7)	0.0325 (3)
H3	0.6726	0.3704	0.4981	0.049*
O4	0.34983 (9)	-0.13296 (7)	0.47288 (6)	0.0181 (2)
05	0.77327 (11)	0.41465 (9)	0.44798 (7)	0.0340 (3)

O6	0.56001 (11)	0.24649 (9)	0.10559 (7)	0.0342 (3)
N1	0.48650 (11)	0.31521 (9)	0.61496 (7)	0.0197 (3)
N2	0.21359 (11)	0.02768 (9)	0.45005 (7)	0.0189 (3)
N3	0.31690 (12)	-0.05439 (10)	0.60560 (8)	0.0218 (3)
N4	0.38177 (13)	0.28738 (10)	0.41875 (8)	0.0270 (3)
N5	0.95472 (13)	0.40818 (10)	0.42324 (8)	0.0271 (4)
N6	0.55036 (12)	0.27485 (11)	0.22479 (8)	0.0262 (3)
C1	0.38489 (15)	0.16079 (12)	0.63305 (9)	0.0242 (4)
H1A	0.3877	0.1059	0.6688	0.029*
H1B	0.302	0.1882	0.6186	0.029*
C2	0.47414 (15)	0.24061 (12)	0.66996 (9)	0.0234 (4)
H2A	0.4462	0.2729	0.7099	0.028*
H2B	0.5539	0.2102	0.6933	0.028*
C3	0.59968 (16)	0.37190 (14)	0.64366 (10)	0.0316 (4)
H3A	0.6658	0.3265	0.6689	0.038*
H3B	0.5894	0.421	0.6809	0.038*
C4	0.63246 (17)	0.42432 (13)	0.58016 (10)	0.0333 (5)
H4A	0.5753	0.4792	0.5611	0.04*
H4B	0.715	0.4521	0.5978	0.04*
C5	0.38177 (16)	0.38211 (13)	0.59616 (10)	0.0347 (5)
H5A	0.38	0.4204	0.6406	0.052*
H5B	0.3074	0.3433	0.5792	0.052*
H5C	0.3882	0.4272	0.5562	0.052*
C6	0.23263 (14)	-0.14850 (12)	0.42388 (9)	0.0212 (4)
H6A	0.2025	-0.2145	0.4331	0.025*
H6B	0.2358	-0.146	0.3712	0.025*
C7	0.14866 (14)	-0.06917 (11)	0.43730 (10)	0.0226 (4)
H7A	0.0769	-0.0642	0.3934	0.027*
H7B	0.1209	-0.0865	0.4816	0.027*
C8	0.23655 (14)	0.06676 (12)	0.37959 (9)	0.0227 (4)
H8A	0.2299	0.1397	0.3791	0.027*
H8B	0.1737	0.041	0.3358	0.027*
C9	0.35990 (13)	0.03810 (12)	0.37239 (9)	0.0200 (4)
H9A	0.36	-0.0322	0.3577	0.024*
H9B	0.3806	0.079	0.3335	0.024*
C10	0.14028 (14)	0.09998 (13)	0.47868 (10)	0.0282 (4)
H10A	0.0638	0 1119	0 4403	0.042*
H10B	0 1849	0 1623	0 4907	0.042*
H10C	0.1237	0.0736	0.5239	0.042*
C11	0 25484 (15)	-0.07453(12)	0 64353 (9)	0.0217 (4)
C12	0.32760 (15)	0.32850(12)	0 36446 (9)	0.0217(1)
C13	0.87761 (16)	0.38143(13)	0 46022 (10)	0.0280(4)
H13A	0.9033	0.3336	0.4988	0.034*
C14	1.07644 (16)	0.36743 (15)	0.44205 (12)	0.0428 (5)
H14A	1.0877	0.3222	0.4846	0.064*
H14B	1 1354	0 4213	0 4554	0.064*
H14C	1 0881	0 3314	0 3988	0.064*
C15	0 92280 (18)	0 48139 (15)	0 36406 (12)	0.0452.(6)
H15A	0.8354	0 4931	0 3504	0.068*
				2.000

0.9458	0.4573	0.3202	0.068*
0.9656	0.5433	0.3816	0.068*
0.59011 (15)	0.29153 (13)	0.16508 (10)	0.0283 (4)
0.6473	0.3433	0.169	0.034*
0.46767 (16)	0.19439 (13)	0.22546 (10)	0.0310 (4)
0.4335	0.1699	0.1743	0.047*
0.4024	0.2181	0.2454	0.047*
0.5112	0.1408	0.2572	0.047*
0.59935 (17)	0.32815 (15)	0.29436 (11)	0.0434 (5)
0.6562	0.3785	0.2872	0.065*
0.6415	0.2818	0.3335	0.065*
0.5334	0.3601	0.3094	0.065*
	0.9458 0.9656 0.59011 (15) 0.6473 0.46767 (16) 0.4335 0.4024 0.5112 0.59935 (17) 0.6562 0.6415 0.5334	0.94580.45730.96560.54330.59011 (15)0.29153 (13)0.64730.34330.46767 (16)0.19439 (13)0.43350.16990.40240.21810.51120.14080.59935 (17)0.32815 (15)0.65620.37850.64150.28180.53340.3601	0.94580.45730.32020.96560.54330.38160.59011 (15)0.29153 (13)0.16508 (10)0.64730.34330.1690.46767 (16)0.19439 (13)0.22546 (10)0.43350.16990.17430.40240.21810.24540.51120.14080.25720.59935 (17)0.32815 (15)0.29436 (11)0.65620.37850.28720.64150.28180.33350.53340.36010.3094

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.02102 (13)	0.01665 (12)	0.01768 (13)	-0.00053 (12)	0.00874 (10)	-0.00076 (11)
Cr1	0.01441 (12)	0.01699 (13)	0.01527 (13)	-0.00159 (12)	0.00662 (10)	-0.00100 (11)
S1	0.0342 (3)	0.0666 (4)	0.0332 (3)	-0.0060 (3)	0.0221 (2)	0.0104 (3)
S2	0.0363 (3)	0.0302 (3)	0.0181 (2)	-0.0017 (2)	-0.00015 (19)	0.0021 (2)
O1	0.0148 (6)	0.0195 (6)	0.0124 (6)	-0.0011 (5)	0.0040 (4)	0.0002 (5)
O2	0.0213 (6)	0.0202 (6)	0.0160 (6)	-0.0023 (5)	0.0106 (5)	-0.0040 (5)
O3	0.0441 (8)	0.0250 (7)	0.0377 (8)	-0.0126 (6)	0.0269 (7)	-0.0112 (6)
O4	0.0160 (6)	0.0192 (6)	0.0191 (6)	-0.0028 (5)	0.0049 (5)	-0.0033 (5)
05	0.0265 (7)	0.0378 (8)	0.0414 (8)	0.0010 (6)	0.0158 (6)	0.0019 (7)
O6	0.0396 (8)	0.0382 (8)	0.0284 (7)	0.0000 (6)	0.0153 (6)	-0.0026 (6)
N1	0.0210 (8)	0.0180 (7)	0.0205 (7)	0.0010 (6)	0.0065 (6)	-0.0007 (6)
N2	0.0151 (7)	0.0205 (7)	0.0218 (8)	-0.0003 (6)	0.0066 (6)	-0.0022 (6)
N3	0.0243 (8)	0.0235 (8)	0.0202 (8)	-0.0041 (7)	0.0108 (6)	-0.0015 (6)
N4	0.0353 (9)	0.0211 (8)	0.0254 (8)	0.0013 (7)	0.0098 (7)	0.0021 (7)
N5	0.0265 (8)	0.0276 (8)	0.0304 (9)	0.0025 (7)	0.0131 (7)	0.0070 (7)
N6	0.0246 (8)	0.0296 (8)	0.0253 (8)	0.0001 (7)	0.0086 (6)	-0.0018 (7)
C1	0.0336 (10)	0.0234 (9)	0.0217 (9)	-0.0031 (8)	0.0176 (8)	-0.0055 (8)
C2	0.0302 (10)	0.0244 (9)	0.0167 (9)	0.0027 (8)	0.0086 (7)	-0.0029 (7)
C3	0.0352 (11)	0.0326 (10)	0.0270 (10)	-0.0097 (9)	0.0087 (8)	-0.0085 (9)
C4	0.0452 (12)	0.0240 (10)	0.0362 (12)	-0.0136 (9)	0.0204 (10)	-0.0102 (9)
C5	0.0431 (12)	0.0319 (11)	0.0299 (11)	0.0153 (10)	0.0117 (9)	0.0025 (9)
C6	0.0199 (9)	0.0221 (9)	0.0213 (9)	-0.0064 (8)	0.0050 (7)	-0.0028 (8)
C7	0.0160 (9)	0.0265 (9)	0.0254 (10)	-0.0052 (8)	0.0059 (7)	-0.0030 (8)
C8	0.0206 (9)	0.0239 (9)	0.0206 (9)	-0.0017 (8)	0.0006 (7)	0.0026 (8)
C9	0.0202 (9)	0.0249 (9)	0.0139 (8)	-0.0039 (7)	0.0031 (7)	0.0016 (7)
C10	0.0190 (9)	0.0316 (10)	0.0338 (11)	0.0051 (8)	0.0066 (8)	-0.0047 (9)
C11	0.0222 (9)	0.0235 (9)	0.0182 (9)	-0.0029 (8)	0.0038 (7)	0.0016 (7)
C12	0.0257 (10)	0.0178 (9)	0.0213 (9)	-0.0037 (8)	0.0105 (8)	-0.0031 (8)
C13	0.0320 (11)	0.0252 (10)	0.0284 (10)	-0.0016 (9)	0.0108 (8)	-0.0002 (8)
C14	0.0319 (12)	0.0445 (13)	0.0566 (15)	0.0105 (10)	0.0198 (10)	0.0128 (11)
C15	0.0407 (12)	0.0525 (14)	0.0455 (14)	0.0039 (11)	0.0173 (10)	0.0217 (11)
C16	0.0232 (10)	0.0303 (11)	0.0354 (11)	0.0013 (8)	0.0151 (8)	0.0000 (9)

C17	0.0341 (11)	0.0305 (10)	0.0316 (11)	0.0012 (9)	0.0143 (9)	0.0048 (9)
C18	0.0436 (13)	0.0519 (14)	0.0351 (12)	-0.0069 (11)	0.0119 (10)	-0.0138 (11)
Geometric parar	neters (Å, °)					
Mn1—O4 ⁱ		2.0651 (10)	С1—Н	[1B	0.99	,
Mn1—N4		2.0923 (15)	С2—Н	12A	0.99	I Contraction of the second
Mn1—O2		2.1199 (10)	С2—Н	12B	0.99	1
Mn1—O3		2.2337 (11)	С3—С	4	1.51	2 (2)
Mn1—N1		2.3004 (13)	С3—Н	13A	0.99	1
Cr1—O2		1.9391 (10)	С3—Н	I3B	0.99	1
Cr1—O4		1.9546 (10)	С4—Н	[4A	0.99	1
Cr101		1.9914 (10)	С4—Н	[4B	0.99	1
Cr1—O1 ⁱ		2.0013 (10)	С5—Н	15A	0.98	
Cr1—N3		2.0071 (13)	С5—Н	I5B	0.98	
Cr1—N2		2.0974 (14)	С5—Н	15C	0.98	
Cr1—Cr1 ⁱ		3.0428 (4)	C6—C	7	1.51	1 (2)
S1-C11		1.6240 (16)	С6—Н	16A	0.99	I Contraction of the second
S2—C12		1.6260 (18)	С6—Н	16B	0.99	i de la companya de l
O1—C9		1.4238 (18)	С7—Н	[7A	0.99	1
O1—Cr1 ⁱ		2.0013 (10)	С7—Н	[7B	0.99	I Contraction of the second
O2—C1		1.4161 (16)	C8—C	9	1.51	4 (2)
O3—C4		1.4212 (19)	С8—Н	[8A	0.99	
O3—H3		0.8197	С8—Н	[8B	0.99	1
O4—C6		1.4189 (18)	С9—Н	19A	0.99	I Contraction of the second
O4—Mn1 ⁱ		2.0651 (10)	С9—Н	19B	0.99	1
O5—C13		1.2437 (18)	C10—	H10A	0.98	
O6—C16		1.225 (2)	C10—	H10B	0.98	
N1—C5		1.470 (2)	C10—	H10C	0.98	
N1—C2		1.4710 (19)	C13—	H13A	0.95	
N1—C3		1.479 (2)	C14—	H14A	0.98	
N2-C10		1.4841 (18)	C14—	H14B	0.98	
N2—C7		1.4944 (19)	C14—	H14C	0.98	
N2—C8		1.5021 (19)	C15—	H15A	0.98	
N3—C11		1.1671 (17)	C15—	H15B	0.98	
N4—C12		1.169 (2)	C15—	H15C	0.98	
N5-C13		1.3159 (19)	C16—	H16A	0.95	
N5-C15		1.449 (2)	C17—	H17A	0.98	
N5-C14		1.456 (2)	C17—	H17B	0.98	
N6—C16		1.332 (2)	C17—	H17C	0.98	
N6—C17		1.449 (2)	C18—	H18A	0.98	
N6—C18		1.451 (2)	C18—	H18B	0.98	
C1—C2		1.517 (2)	C18—	H18C	0.98	
C1—H1A		0.99				
O4 ⁱ —Mn1—N4		132.86 (5)	N1—C	23—H3B	109	6
O4 ¹ —Mn1—O2		92.63 (4)	C4—C	з—H3B	109.	6
N4—Mn1—O2		111.71 (5)	H3A—	-C3—H3B	108.	1

O4 ⁱ —Mn1—O3	88.41 (4)	O3—C4—C3	107.69 (13)
N4—Mn1—O3	90.54 (5)	O3—C4—H4A	110.2
O2—Mn1—O3	147.52 (4)	С3—С4—Н4А	110.2
O4 ⁱ —Mn1—N1	117.93 (5)	O3—C4—H4B	110.2
N4—Mn1—N1	106.77 (5)	C3—C4—H4B	110.2
O2—Mn1—N1	77.41 (4)	H4A—C4—H4B	108.5
O3—Mn1—N1	73.53 (4)	N1—C5—H5A	109.5
O2—Cr1—O4	177.32 (5)	N1—C5—H5B	109.5
O2—Cr1—O1	84.50 (4)	H5A—C5—H5B	109.5
O4—Cr1—O1	93.42 (4)	N1—C5—H5C	109.5
O2—Cr1—O1 ⁱ	96.72 (4)	H5A—C5—H5C	109.5
O4—Cr1—O1 ⁱ	84.58 (4)	H5B—C5—H5C	109.5
O1—Cr1—O1 ⁱ	80.70 (5)	O4—C6—C7	109.13 (13)
O2—Cr1—N3	91.83 (5)	O4—C6—H6A	109.9
O4—Cr1—N3	90.19 (5)	С7—С6—Н6А	109.9
O1—Cr1—N3	175.88 (5)	O4—C6—H6B	109.9
O1 ⁱ —Cr1—N3	101.65 (5)	С7—С6—Н6В	109.9
O2—Cr1—N2	96.68 (5)	H6A—C6—H6B	108.3
O4—Cr1—N2	81.41 (5)	N2—C7—C6	109.47 (12)
O1—Cr1—N2	84.05 (4)	N2—C7—H7A	109.8
O1 ⁱ —Cr1—N2	158.59 (5)	С6—С7—Н7А	109.8
N3—Cr1—N2	94.53 (5)	N2—C7—H7B	109.8
O2—Cr1—Cr1 ⁱ	90.82 (3)	С6—С7—Н7В	109.8
O4—Cr1—Cr1 ⁱ	88.67 (3)	H7A—C7—H7B	108.2
O1—Cr1—Cr1 ⁱ	40.47 (3)	N2—C8—C9	112.56 (13)
Ol ⁱ —Crl—Crl ⁱ	40.23 (3)	N2—C8—H8A	109.1
N3—Cr1—Cr1 ⁱ	141.77 (4)	С9—С8—Н8А	109.1
N2—Cr1—Cr1 ⁱ	122.99 (4)	N2—C8—H8B	109.1
C9—O1—Cr1	109.12 (8)	С9—С8—Н8В	109.1
C9—O1—Cr1 ⁱ	127.69 (9)	H8A—C8—H8B	107.8
Cr1—O1—Cr1 ⁱ	99.30 (5)	O1—C9—C8	108.09 (12)
C1—O2—Cr1	128.37 (9)	O1—C9—H9A	110.1
C1—O2—Mn1	116.79 (9)	С8—С9—Н9А	110.1
Cr1—O2—Mn1	114.84 (4)	O1—C9—H9B	110.1
C4—O3—Mn1	118.54 (9)	С8—С9—Н9В	110.1
С4—О3—Н3	109.4	Н9А—С9—Н9В	108.4
Mn1—O3—H3	132.1	N2-C10-H10A	109.5
C6—O4—Cr1	117.74 (9)	N2—C10—H10B	109.5
C6—O4—Mn1 ⁱ	126.56 (9)	H10A—C10—H10B	109.5
Cr1—O4—Mn1 ⁱ	115.19 (5)	N2-C10-H10C	109.5
C5—N1—C2	110.85 (12)	H10A—C10—H10C	109.5
C5—N1—C3	110.47 (13)	H10B-C10-H10C	109.5
C2—N1—C3	110.54 (13)	N3—C11—S1	179.83 (19)
C5—N1—Mn1	112.29 (10)	N4—C12—S2	179.54 (18)
C2—N1—Mn1	104.53 (9)	O5-C13-N5	124.30 (17)

C3—N1—Mn1	107.99 (9)	O5—C13—H13A	117.9
C10—N2—C7	108.96 (12)	N5—C13—H13A	117.9
C10—N2—C8	109.64 (12)	N5—C14—H14A	109.5
C7—N2—C8	111.83 (12)	N5-C14-H14B	109.5
C10—N2—Cr1	115.34 (10)	H14A—C14—H14B	109.5
C7—N2—Cr1	104.72 (9)	N5-C14-H14C	109.5
C8—N2—Cr1	106.32 (9)	H14A—C14—H14C	109.5
C11—N3—Cr1	165.05 (14)	H14B—C14—H14C	109.5
C12—N4—Mn1	171.08 (13)	N5—C15—H15A	109.5
C13—N5—C15	121.22 (15)	N5—C15—H15B	109.5
C13—N5—C14	121.02 (15)	H15A—C15—H15B	109.5
C15—N5—C14	117.73 (14)	N5—C15—H15C	109.5
C16—N6—C17	120.90 (15)	H15A—C15—H15C	109.5
C16—N6—C18	121.30 (15)	H15B-C15-H15C	109.5
C17—N6—C18	117.37 (14)	O6—C16—N6	126.22 (17)
O2—C1—C2	109.56 (12)	O6—C16—H16A	116.9
O2—C1—H1A	109.8	N6—C16—H16A	116.9
C2—C1—H1A	109.8	N6—C17—H17A	109.5
O2—C1—H1B	109.8	N6—C17—H17B	109.5
C2—C1—H1B	109.8	H17A—C17—H17B	109.5
H1A—C1—H1B	108.2	N6—C17—H17C	109.5
N1—C2—C1	110.99 (13)	H17A—C17—H17C	109.5
N1—C2—H2A	109.4	H17B—C17—H17C	109.5
C1—C2—H2A	109.4	N6—C18—H18A	109.5
N1—C2—H2B	109.4	N6—C18—H18B	109.5
C1—C2—H2B	109.4	H18A—C18—H18B	109.5
H2A—C2—H2B	108	N6—C18—H18C	109.5
N1—C3—C4	110.37 (15)	H18A—C18—H18C	109.5
N1—C3—H3A	109.6	H18B-C18-H18C	109.5
С4—С3—НЗА	109.6		
O2—Cr1—O1—C9	-126.82(9)	O3—Mn1—N1—C3	-24.90 (10)
O4—Cr1—O1—C9	51.49 (9)	O2-Cr1-N2-C10	-33.38 (11)
01^{i} Cr1 - 01 - C9	135.43 (11)	O4—Cr1—N2—C10	148.52 (11)
N_2 —Cr1—Q1—C9	-29 49 (9)	01-Cr1-N2-C10	-117 11 (10)
$Cr1^{i}$ $Cr1$ $O1$ $C9$	135 43 (11)	O_1^{i} Cr1 N2 C10	-161.80(12)
02—Cr1—O1—Cr1 ⁱ	97.75 (5)	N3—Cr1—N2—C10	59.00 (11)
$O4$ — $Cr1$ — $O1$ — $Cr1^{i}$	-83.93 (5)	Cr1 ⁱ —Cr1—N2—C10	-128.72 (9)
01^{i} —Cr1—O1—Cr1 ⁱ	0	O2—Cr1—N2—C7	-153.11 (9)
N2—Cr1—O1—Cr1 ⁱ	-164.92 (5)	O4—Cr1—N2—C7	28.78 (9)
O1—Cr1—O2—C1	173.65 (13)	O1—Cr1—N2—C7	123.16 (9)
O1 ⁱ —Cr1—O2—C1	-106.42 (13)	O1 ⁱ —Cr1—N2—C7	78.47 (15)
N3—Cr1—O2—C1	-4.47 (13)	N3—Cr1—N2—C7	-60.73 (9)
N2—Cr1—O2—C1	90.32 (13)	Cr1 ⁱ —Cr1—N2—C7	111.54 (8)
Cr1 ⁱ —Cr1—O2—C1	-146.32 (12)	O2—Cr1—N2—C8	88.37 (10)
O1—Cr1—O2—Mn1	-5.92 (5)	O4—Cr1—N2—C8	-89.74 (9)
$O1^{i}$ —Cr1—O2—Mn1	74.01 (6)	O1—Cr1—N2—C8	4.64 (9)
	× /		· /

N3—Cr1—O2—Mn1	175.97 (6)	O1 ⁱ —Cr1—N2—C8	-40.06 (18)
N2-Cr1-O2-Mn1	-89.25 (6)	N3—Cr1—N2—C8	-179.25 (10)
Cr1 ⁱ —Cr1—O2—Mn1	34.11 (5)	Cr1 ⁱ —Cr1—N2—C8	-6.98 (11)
O4 ⁱ —Mn1—O2—C1	121.25 (11)	O2—Cr1—N3—C11	87.0 (5)
N4—Mn1—O2—C1	-100.05 (11)	O4—Cr1—N3—C11	-91.3 (5)
O3—Mn1—O2—C1	30.08 (14)	O1 ⁱ —Cr1—N3—C11	-175.8 (5)
N1—Mn1—O2—C1	3.21 (11)	N2-Cr1-N3-C11	-9.9 (5)
O4 ⁱ —Mn1—O2—Cr1	-59.13 (6)	Cr1 ⁱ —Cr1—N3—C11	-179.4 (5)
N4—Mn1—O2—Cr1	79.57 (6)	Cr1—O2—C1—C2	152.10 (10)
O3—Mn1—O2—Cr1	-150.30 (6)	Mn1—O2—C1—C2	-28.33 (16)
N1—Mn1—O2—Cr1	-177.17 (6)	C5—N1—C2—C1	76.39 (16)
O4 ⁱ —Mn1—O3—C4	-121.36 (13)	C3—N1—C2—C1	-160.77 (13)
N4—Mn1—O3—C4	105.78 (13)	Mn1—N1—C2—C1	-44.81 (14)
O2—Mn1—O3—C4	-28.96 (16)	O2—C1—C2—N1	50.17 (17)
N1—Mn1—O3—C4	-1.57 (12)	C5—N1—C3—C4	-74.85 (17)
O1—Cr1—O4—C6	-91.82 (10)	C2—N1—C3—C4	162.08 (13)
O1 ⁱ —Cr1—O4—C6	-172.13 (10)	Mn1—N1—C3—C4	48.29 (15)
N3—Cr1—O4—C6	86.19 (10)	Mn1—O3—C4—C3	27.02 (18)
N2—Cr1—O4—C6	-8.37 (10)	N1-C3-C4-O3	-49.63 (19)
Cr1 ⁱ —Cr1—O4—C6	-132.03 (10)	Cr1—O4—C6—C7	-14.59 (15)
O1—Cr1—O4—Mn1 ⁱ	80.51 (5)	Mn1 ⁱ —O4—C6—C7	174.07 (9)
O1 ⁱ —Cr1—O4—Mn1 ⁱ	0.19 (5)	C10—N2—C7—C6	-168.24 (14)
N3—Cr1—O4—Mn1 ⁱ	-101.49 (6)	C8—N2—C7—C6	70.40 (16)
N2—Cr1—O4—Mn1 ⁱ	163.96 (6)	Cr1—N2—C7—C6	-44.32 (14)
Cr1 ⁱ —Cr1—O4—Mn1 ⁱ	40.29 (5)	O4—C6—C7—N2	39.62 (17)
O4 ⁱ —Mn1—N1—C5	176.21 (10)	C10—N2—C8—C9	145.05 (14)
N4—Mn1—N1—C5	11.66 (11)	C7—N2—C8—C9	-93.99 (15)
O2—Mn1—N1—C5	-97.53 (11)	Cr1—N2—C8—C9	19.74 (15)
O3—Mn1—N1—C5	97.14 (11)	Cr1-01-C9-C8	47.36 (14)
O4 ⁱ —Mn1—N1—C2	-63.56 (10)	Cr1 ⁱ —O1—C9—C8	166.30 (9)
N4—Mn1—N1—C2	131.89 (10)	N2—C8—C9—O1	-44.64 (17)
O2—Mn1—N1—C2	22.71 (9)	C15—N5—C13—O5	0.6 (3)
O3—Mn1—N1—C2	-142.63 (10)	C14—N5—C13—O5	178.61 (17)
$O4^{i}$ —Mn1—N1—C3	54.17 (11)	C17—N6—C16—O6	3.1 (3)
N4—Mn1—N1—C3	-110.38 (11)	C18—N6—C16—O6	175.29 (18)
O2—Mn1—N1—C3	140.44 (11)		× /
Symmetry codes: (i) $-x+1$, $-v$, $-z+1$.	~ /		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D {\longrightarrow} H {\cdots} A$
O3—H3…O5	0.82	1.78	2.5985 (18)	176

